E-flap aerodynamic modelling Part II: Multibody dynamics approach
Contents

1. Motivation.
2. Proposal.
3. Multibody Dynamics Model derivation.
4. Experimental setup.
Contents

1. Motivation.

2. Proposal.

3. Multibody Dynamics Model derivation.

4. Experimental setup.

5. Future work: Accurate aerodynamic identification
Motivation

- **Goal:** Accurate aerodynamic forces model identification.
- **Last work:** Volterra Model: (Memory -> Phase)

Figure 1: Frequency response: CFD vs Classical Models

- **Analytical?**
- **CFD validated**
- **CFD?**
- **Analytical?**

Only magnitude validation by flight data.

What about the phase?
Contents

1. Motivation.

2. Proposal.

3. Multibody Dynamics Model derivation.

4. Experimental setup.

5. Future work: Accurate aerodynamic identification
Proposal

1. **Data**: Use flight data directly instead of CFD simulations.

2. **Multibody dynamics**: Inertia and GC changes up to 50% during flapping.

3. **Loads Phase measurement***: Wings and control surfaces tracking.

Contents

1. Motivation.
2. Proposal.
3. Multibody Dynamics Model derivation.
4. Experimental setup.
5. Future work: Accurate aerodynamic identification
Multibody Dynamics Model derivation (I)

\[T = \frac{1}{2} m_0 v^T v + \frac{1}{2} \omega^T I_0 \omega + \frac{1}{2} \sum_{j=1}^{N} \sum_{i=1}^{N} m_{ij} v_{ij}^T v_{ij} + \omega_{ij}^T I_{ij} \omega_{ij} \]

\[\frac{d}{dt} \left[\frac{\partial T}{\partial v} \right] + \left(\sum_{k=1}^{N} \frac{\partial T}{\partial v_k} \Gamma_k \right) v - (J_k^{1,0})^T \left[\frac{\partial T}{\partial p} \right]^T = u \]

\[\Gamma_k = (J_k^{1,0})^T \Lambda_k (J_k^{1,0}) \]

\[\{\Lambda_k\}_{ij} = \frac{\partial}{\partial p_j} (J_k^{0,1})_{ki} - \frac{\partial}{\partial p_i} (J_k^{0,1})_{kj} \]

\[\mathbf{x} = \begin{bmatrix} p \\ v \end{bmatrix} \]

\[M(p) \dot{v} + C(p, v) + E(p, v) = u \]

\(M \): Mass/Inertia matrix.

\(C \): Nonlinear Dynamic coupling matrix.

\(E \): Generalized external forces. (Gravity and aerodynamics).

\(u \): Control forces.
Multibody Dynamics Model derivation (II)
Multibody Dynamics Model derivation (III)

\[M(p) \dot{v} + C(p,v) + E(p,v) = u \]

\[p_{10x1} = \begin{bmatrix} r_{0,I}^l \\ \eta_{0,I}^0 \\ \theta \end{bmatrix}, \quad v_{10x1} = \begin{bmatrix} v_{0,I}^l \\ \omega_{0,I}^0 \\ \dot{\theta} \end{bmatrix}, \quad \dot{p} = \begin{pmatrix} R^{I0} & \overrightarrow{0}_{3x3} & \overrightarrow{0}_{3x4} \\ \overrightarrow{0}_{3x3} & J_{\eta}^{I0} & \overrightarrow{0}_{3x4} \\ \overrightarrow{0}_{4x3} & \overrightarrow{0}_{4x3} & I_{4x4} \end{pmatrix} \begin{pmatrix} v \\ \eta \end{pmatrix} \]

\[C = \frac{1}{2} \dot{M} + \sum_{k=1}^{N} \frac{\partial T}{\partial v_k} \Gamma_k + \frac{1}{2} \frac{\partial M}{\partial \nu} \left(v \otimes I \right) \left(J_k^{I0} \right) - \frac{1}{2} \left(J_k^{I0} \right)^T \left(I \otimes v^T \right) \frac{\partial M}{\partial \nu} \]

\[\{M\}_{ij} = \frac{\partial T}{\partial v_i \partial v_j} \]

\[E(p,v) = E_{grav} + E_{aerody} \]

\[\begin{bmatrix} \dot{r} \\ \dot{\eta} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} R^{I0} & \nu \\ J_{\eta}^{I0} & \omega \end{bmatrix}, \quad \begin{bmatrix} \dot{\nu} \\ \dot{\omega} \end{bmatrix} = -Cv - E + u \]
Multibody Dynamics Model derivation (IV)

Verification:
Contents

1. Motivation.
2. Proposal.
3. Multibody Dynamics Model derivation.
4. Experimental setup.
5. Future work: Accurate aerodynamic identification
Experimental Setup (I)

- Optimal markers location: Asymmetric (minimum 4 per body)

V-TAIL

C-TAIL
Experimental Setup (II)

- Inertia and geometry measurement:
Experimental Setup (III): First test.
Contents

1. Motivation.
2. Proposal.
3. Multibody Dynamics Model.
4. Experimental setup.
5. Future work: Accurate aerodynamic identification
Future work

• Flight experiments to obtain a flight database including joint position tracking.
• Aerodynamic forces reconstruction.
• Aerodynamic model identification.
Thanks for your attention!

Questions?